

$\begin{gathered} 2 \\ \text { (i) } \\ A \end{gathered}$	Median distance $=88^{\text {th }}$ value $=480$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Within 5 cao
B	Lower Quartile $=44^{\text {th }}$ value $=320$	B1	
	Upper Quartile $=132^{\text {nd }}$ value $=680$	B1	
	Interquartile range $=680-320=360$	M1	ft
(ii)		G1	Basic idea
	$\begin{array}{lllll}0 & 320 & 480 & 680 & 1200\end{array}$	G1	Box including median (accurate)
(iii)	Distance Frequency $0<d<200$ 20		
	$200<d \leq 400 \quad 44$	M1	Correct classes
	$400<d \leq 600 \quad 54$		Correct
	$600<d \leq 800 \quad 32$	M1	frequencies
	$800<d \leq 1000 \quad 19$		
	$1000<d \leq 1200 \quad 7$		
(iv)	$\begin{array}{lll} \operatorname{Mid}(x) & f & f x \\ 100 & 00 & \end{array}$		
	100 20 2000 300 44 13200	M1	mid points
	300 44 13200 500 54 27000	M1	
	$700 \quad 3222400$		
	$900 \quad 1917100$		
	110077700		
	17689400		
	Estimate of mean $=507.95$	A1	
(v)	Mid point of first class now 150	M1	150
	Total increase of 1000 New estimate of mean $=513.6$	A1	
(vi)	The point (0,0) would move to (100,0)	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$	$\begin{aligned} & \text { point }(0,0) \\ & \text { point }(100,0) \end{aligned}$

3	(i)	Positive	[1]	CAO	
	(ii)	$\begin{array}{ll} \text { Mean }=5.064 & \text { allow } 5.1 \text { with working } 126.6 / 25 \text { or } 5.06 \text { without } \\ \text { SD }=1.324 & \text { allow } 1.3 \text { with working or } 1.32 \text { without } \end{array}$	B1 B2 [3]	$\begin{aligned} & \text { Allow B } 1 \text { for RMSD = } \\ & 1.297 \text { or var }=1.753 \\ & \text { or } \mathrm{MSD}=1.683 \end{aligned}$	Also allow B1 for $\operatorname{Sxx}=42.08$ or for $\Sigma x^{2}=683$ SC 1 for both mean $=50.64$ and $\mathrm{SD}=$ 13.24 (even if over-specified)
	(iii)	$\begin{aligned} & \bar{x}-2 s=5.064-2 \times 1.324=2.416 \\ & \bar{x}+2 s=5.064+2 \times 1.324=7.712 \end{aligned}$ So there is an outlier.	B1FT M1 A1FT E1 [4]	FT their mean and sd for $\bar{X}+2 s$ but withhold final E mark if their limits mean that there are no outliers. For upper limit Incorrect statement such as 7.6 and 8.1 are outliers gets E0 Do not award E1 if calculation error in upper limit	For use of quartiles and IQR $\mathrm{Q}_{1}=3.95 ; \mathrm{Q}_{3}=6.0 ; \mathrm{IQR}=2.05$ $3.95-1.5(2.05)$ gets M1 Allow other sensible definitions of quartiles $6.0+1.5(2.05) \text { gets M1 }$ Limits 0.875 and 9.075 So there are no outliers NB do not penalise over-specification here as not the final answer but just used for comparison. FT from SC1

